Abstract
Dynamin GTPase (Dyn) plays a critical role in membrane-remodelling events underlying endocytosis. Studies in Drosophila identified a functional interaction between the Dyn homologue, encoded by the shibire (shi) gene, and Abnormal wing discs (Awd), a nucleoside diphosphate kinase (NDPK) that is the homologue of group I Nme human genes. These Drosophila studies showed that awd mutations enhance mutant shi phenotype and thus indicated the existence of a highly specific interaction between these genes. Furthermore, in human cells, it has been shown that Nme proteins promote Dyn activity in different membrane compartments through spatially controlled supply of GTP. Interestingly, Awd and Nme proteins have been detected in the extracellular environment. While no role has been inferred to extracellular Awd, presence of Nme1 in cancer patient serum is an unfavourable prognostic marker. In the present work, we used Drosophila and human cell line models to investigate the shuttling Awd/Nme1 proteins between intracellular and extracellular spaces. By using classic and reverse genetic approaches, we show that downregulation of Shi/Dyn1 activity enhances extracellular Awd/Nme1 in both Drosophila and human colon cell lines. We extended our analyses to colon cancer cell lines and found that knocking down Dyn1, besides to raise Nme1 extracellular amount, downregulates expression of molecular components that play key roles in tumour invasion. Interestingly, in vivo analyses of Drosophila larval adipocytes show that the conditional block of Shi activity greatly reduces intracellular amount of Awd confirming that Shi plays a key role in controlling the balance between intracellular and extracellular Awd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.