Abstract
When working in dynamic environment, traditional SLAM framework performs poorly due to interference from dynamic objects. By taking advantages of deep learning in object detection, a semantic simultaneous localization and mapping framework named Dynamic-SLAM is proposed, in order to solve the problem of SLAM in dynamic environment. First, based on the convolutional neural network, an SSD object detector which combines prior knowledge is constructed to detect dynamic objects in the newly detection thread at semantic level. Then, in view of low recall rate of the existing SSD object detection network, a missed detection compensation algorithm based on the speed invariance in adjacent frames is proposed, which greatly improves the recall rate of detection. Finally, a feature-based visual SLAM system is constructed, which processes the feature points of dynamic objects through a selective tracking algorithm in the tracking thread, to significantly reduce the error of pose estimation caused by incorrect matching. The recall rate of the system is increased from 82.3% to 99.8% compared with the original SSD network. Several experiments show that the localization accuracy of Dynamic-SLAM is higher than the state-of-the-art systems. The system successfully localizes and constructs an accurate environmental map in real-world dynamic environment by using a mobile robot. In sum, our experimental demonstrations verify that Dynamic-SLAM shows improved accuracy and robustness in robot localization and mapping comparing to the state-of-the-art SLAM system in dynamic environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.