Abstract

The process of protonated formic acid dissociating from the transition state was studied using ring-polymer molecular dynamics (RPMD), classical MD, and quasi-classical trajectory (QCT) simulations. Temperature had a strong influence on the branching fractions for the HCO+ + H2O and CO + H3O+ dissociation channels. The RPMD and classical MD simulations showed similar behavior, but the QCT dynamics were significantly different owing to the excess energies in the quasi-classical trajectories. Machine-learning analysis identified several key features in the phase information of the vibrational motions at the transition state. We found that the initial configuration and momentum of a hydrogen atom connected to a carbon atom and the shrinking coordinate of the CO bond at the transition state play a role in the dynamics of HCO+ + H2O production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call