Abstract

The 3D packing problem has a wide range of applications. However, the complex geometry of irregular objects leads to a sharp increase in the number of placement combinations, making it a challenging problem. In this paper, we propose a packing pipeline based on rigid body dynamics simulation to deal with two types of 3D packing problems. One is the variant bin packing problem, which involves placing more objects into a container of given dimensions to maximize space utilization. The other is the open dimension problem, where the goal is to minimize the container that can accommodate all objects. We first use heuristic placement strategies and a fast collision detection algorithm to efficiently obtain initial packing results. Then, we simulate the shaking of the container according to the dynamic principle. Combined with the vacant space filling operation, shaking the container drives the movement of objects in the container to make the arrangement of objects more compact. For the open dimension packing, the container height is optimized by adjusting the constraints of simulation in the basic pipeline. Experimental results show that our method has advantages over existing methods in both speed and packing density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call