Abstract

Based on spraying pesticide and introducing infected pest and natural enemy for pest control, an SI ecological epidemic model with different frequencies of pesticide applications and infected pests and natural enemy releases is proposed and studied. With spraying either more or less frequently than the releases, the threshold condition of existence and global attractiveness of susceptible pest extinction periodic solution is obtained. We investigate the effects of the pest control tactics on the threshold conditions. We also show that the system has rich dynamics including period-doubling bifurcations and chaos as the release period increases, which implies that the presence of impulsive intervention makes the dynamic behavior more complex. Finally, to see how the pesticide applications can be reduced, we develop a model involving periodic releases of natural enemies with chemical control applied only when the densities of the pest reaches the given Economic Threshold. It indicates that the hybrid method is the most effective method to control pest and the frequency of pesticide applications largely depends on the initial densities and the control tactics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.