Abstract

Due to the good thermal-mechanical and luminescence properties, Yb:YAG ceramics are suitable as thin-disk lasers; however, their efficiency is limited by the presence of Yb2+ ions, which entail parasitic energy transfer from Yb3+ to Yb2+. This article focuses on the Yb2+ formation in Yb:YAG ceramics prepared by solid-state reaction sintering. The samples were prepared by air annealing, the oxidation of the material leads to recharging Yb2+ ion to its trivalent state. The activation energy was determined by Jander to be Ea(D) = 2.7 ± 0.2 eV, which is in good agreement with the activation energy for oxygen diffusion in the YAG lattice. It was concluded that the recharging of Yb2+ ion to its trivalent state in YAG ceramics is limited by the oxygen self-diffusion through the grain volume, and the oxygen vacancy alone and/or together with the presence of antisites can be proposed as Yb2+ charge compensation mechanism in the YAG ceramics, unlike the YbAG single crystals, where tetravalent impurities are responsible for charge compensation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call