Abstract
The viscoelastic behaviour of worm-like micelles in small-amplitude oscillatory, steady simple shear and uniaxial extensional flows are analyzed with a model that couples the Oldroyd-B constitutive equation with a kinetic equation that accounts for the structural changes induced by the flow. In some cases, the constitutive equation predicts a viscoelastic behaviour that is consistent with the Cox–Merz rule. Departures from this rule are also predicted. Experimental data obtained for two worm-like micellar systems indicate that in these solutions, the Cox–Merz rule is not usually followed, in agreement with the predictions of our model. In uniaxial extensional flow, the model predicts a strain hardening in the extensional viscosity at low extensional rates and a strain-thinning at high extensional rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.