Abstract

Dynamic interaction of wind-turbine-driven generators on electric utility networks was studied by computer simulation. Nonlinear representations of wind-turbine and various drive train elements and Park equation representations of synchronous and induction generators were implemented. An infinite capacity network was assumed. Time history responses for various system configurations were computed using as the input function severe wind gust data added to cyclical torque variations occurring at turbine blade frequency. Results indicated that severe transient mechanical and electrical stresses can be induced for certain system configurations. Best results were obtained by interposing rate or damped compliant couplings between the wind turbine and a synchronous generator. The induction generator did not appear to require such means. Blade pitch control (or equivalent) was required to limit output above rated wind velocities for wind turbines configured to produce maximum mum specific power. The blade pitch control loop must exhibit high performance to limit transient overshoots. An aerodynamically limited turbine driving an induction generator exhibited good response without the need for blade pitch control, but at the cost of increased turbine rotor diameter. Further work is indicated, taking into account wind-turbine aeroelastic effects, finite capacity networks, and other factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.