Abstract

Semi-analytic treatments of the evolution of orbits of weakly interacting massive particles (WIMPs) in the solar system suggest that the WIMPs bound to the solar system may enhance the direct detection rate relative to that of the unbound pop ulation by up to a factor of order unity, and boost the flux of neutrinos from WIMP annihilation in the Earth by up to two orders of magnitude. To test these important but uncertain results, we perform a suite of numerical orbit integrations to explore the properties of the bound WIMP population as a function of the WIMP mass and the scattering cross section with baryonic matter. For regions of WIMP parameter space presently allowed by experiments, we find that (i) the bound W IMP population enhances the direct detection rate by at most ∼ 1% relative to the rate from unbound halo WIMPs; (ii) it is unlikely that planned km 3 -scale neutrino telescopes will detect neutrinos from WIMP annihilation in the Earth; (iii) the event rate from neutrinos produced by WIMP annihilation in the Sun may be much smaller than implied by the usual calculations, which assume that WIMPs scattered onto bound orbits are rapidly thermalized in the Sun.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call