Abstract

The characteristics of ion heat transport inside the internal transport barrier (ITB), which is sustained by weak magnetic shear, are investigated using a cold pulse induced by supersonic molecular-beam injection (SMBI) in JT-60U. It is known that cold-pulse propagation in ITBs usually significantly reduces the temperature and degrades the temperature gradient. When subsequent SMBIs are launched before the temperature has recovered, it is observed that the temperature gradient of the ITB is not monotonically decreased but alternately decreased and increased. Alternating decreasing and increasing phases of the ITB temperature gradient continue for about 1 s (∼6τ E), and the properties of the cold-pulse propagation and the flux-gradient relations differ according to the phase. The usual transient transport analysis is also provided by inducing a cold pulse in stationary ITBs. A rapid reduction and recovery of the temperature is observed inside the ITBs, and it is found that the ion-heat flux changes without a variation in the local ion-temperature gradient or a change to the other observable local parameters. The flux-gradient relations exhibit significant hysteresis in two ITB cases: (i) ITBs with strong electron-density gradients and (ii) ITBs with weak ion-temperature gradients. In addition, the range in which hysteresis appears is most likely to depend on the width of the ITB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.