Abstract

Water dynamics inside of reverse micelles made from the surfactant Aerosol-OT (AOT) were investigated by observing spectral diffusion, orientational relaxation, and population relaxation using two-dimensional infrared (2D IR) vibrational echo spectroscopy and pump-probe experiments. The water pool sizes of the reverse micelles studied ranged in size from 5.8 to 1.7 nm in diameter. It is found that spectral diffusion, characterized by the frequency-frequency correlation function (FFCF), significantly changes as the water pool size decreases. For the larger reverse micelles (diameter 4.6 nm and larger), the 2D IR signal is composed of two spectral components: a signal from bulk-like core water, and a signal from water at the headgroup interface. Each of these signals (core water and interfacial water) is associated with a distinct FFCF. The FFCF of the interfacial water layer can be obtained using a modified center line slope (CLS) method that has been recently developed. The interfacial FFCFs for large reverse micelles have a single exponential decay (∼1.6 ps) to an offset plus a fast homogeneous component and are nearly identical for all large sizes. The observed ∼1.6 ps interfacial decay component is approximately the same as that found for bulk water and may reflect hydrogen bond rearrangement of bulk-like water molecules hydrogen bonded to the interfacial water molecules. The long time offset arises from dynamics that are too slow to be measured on the accessible experimental time scale. The influence of the chemical nature of the interface on spectral diffusion was explored by comparing data for water inside reverse micelles (5.8 nm water pool diameter) made from the surfactants AOT and Igepal CO-520. AOT has charged, sulfonate head groups, while Igepal CO-520 has neutral, hydroxyl head groups. It is found that spectral diffusion on the observable time scales is not overly sensitive to the chemical makeup of the interface. An intermediate-sized AOT reverse micelle (water pool diameter of 3.3 nm) is analyzed as a large reverse micelle because it has distinct core and interface regions, but its core region is more constrained than bulk water. The interfacial FFCF for this intermediate-sized reverse micelle is somewhat slower than those found for the larger reverse micelles. The water nanopools in the smaller reverse micelles cannot be separated into core and interface regions. In the small reverse micelles, the FFCFs are biexponential decays to an offset plus a fast homogeneous component. Each small reverse micelle exhibits an ∼1 ps decay time, which may arise from local hydrogen bond fluctuations and a slower, ∼6-10 ps decay, which is possibly due to slow hydrogen bond rearrangement of noninterfacial water molecules or topography fluctuations at the interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call