Abstract

The exchange processes between the Maryland Coastal Bays system (MCBs) and their adjacent coastal ocean were simulated using a three-dimensional unstructured-grid based hydrodynamic model, which was validated by observed data including water level, current velocity and salinity. Idealized experiments were then carried out to investigate the impact of wind forcing on water exchange and salt flux. Through these experiments, the exchanges between the MCBs and coastal ocean were investigated at two inlets (Ocean City Inlet and Chincoteague Inlet). Given that winds and tides are two key external forces known to impact estuarine dynamics, the effect of each individual force on the exchange processes was studied to evaluate the corresponding influence on the inlet dynamics. It was found that wind forcing significantly impacts the inlet dynamics: the effect of wind directions on exchange processes under strong wind speeds is substantial; for example, northwesterly winds push flux to the southern part of the bays, while southwesterly winds pile up flux towards northern Chincoteague Bay. The effect of wind forcing on the exchange dynamics becomes stronger with the augmentation of its speed. Meanwhile, tidal forcing is the major driver of exchange dynamics at weak wind speeds (e.g., 3 m/s), and its effect on exchange process gradually weakens with stronger wind speeds (e.g., 7 m/s, 15 m/s). In addition, sensitivity tests elucidated that closing either inlet results in a significant impact on the water elevation, current velocity and salinity nearby the relevant cut-off inlet areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.