Abstract

The present study aims to identify the dominant coherent structures in the wall jet flow subjected to external pulsation at Reynolds number 2600 (based on average jet exit velocity and nozzle diameter). The forcing frequency is varied between St = 0 and 0.99 (St is the Strouhal number). Quadrant analysis is employed to identify the relative contribution of different quadrant motions to the total Reynolds shear stress. Unlike boundary layer flows and channel flows, two distinct regions (inner shear region and outer shear region) are observed in the wall jet flows, and the characteristics of different quadrant motions change in these regions. About 70% of the total shear stress is contributed from the first and fourth quadrants in the outer shear region. We observe that ejection motion is more energetic than sweep motion in the downstream direction, although less frequent. The ejection motion is observed to be more violent for St = 0.44 than for the other frequencies. A proper orthogonal decomposition (POD) analysis reveals while the modal structures exist in different regions of the wall for different jet pulsation; there are no dominant modes (30 modes are required to recover about 75% of the total energy), and the energy is fairly distributed over a large number of modes. However, the POD analyses are capable of capturing the response of the wall jet to different jet pulsations. The most dominant and strongest modal structures are found nearer to the impingement region of the wall when St = 0.44 and the jet tends to laminarize for St > 0.9.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.