Abstract

Functional reentry in the heart can be caused by a wave front of excitation rotating around its edge. Previous simulations on the basis of monodomain cable equations predicted the existence of self-sustained, vortex-like wave fronts (scroll waves) rotating around a filament in three dimensions. In our simulations, we used the more accurate bidomain model with modified Beeler-Reuter ionic kinetics to study the dynamics of scroll-wave filaments in a 16 x 8 x 1.5-mm slab of ventricular tissue with straight fibers. Wave fronts were identified as the areas with inward current. Their edges represented the filaments. Both transmural and intramural reentries with I- and U-shaped filaments, respectively, were obtained by the S1-S2 point stimulation protocol through the virtual electrode-induced phase singularity mechanism. The filaments meandered along elongated trajectories and tended to attach to the tissue boundaries exposed to air (no current flow) rather than to the bath (zero extracellular potential). They completely detached from electroporated (zero transmembrane potential) boundaries. In our simulations, the presence of the bath led to generation of only U-shaped filaments, which survived for the 1.5-mm-thick slab but not for the slabs of 0.5- or 3-mm thicknesses. Thus boundary conditions may be another determinant of the type and dynamics of reentry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.