Abstract

BackgroundPlant pathogens and their hosts undergo adaptive changes in managed agricultural ecosystems, by overcoming host resistance, but the underlying genetic adaptations are difficult to determine in natural settings. Verticillium dahliae is a fungal pathogen that causes Verticillium wilt on many economically important crops including lettuce. We assessed the dynamics of changes in the V. dahliae genome under selection in a long-term field experiment.ResultsIn this study, a field was fumigated before the Verticillium dahliae race 1 strain (VdLs.16) was introduced. A derivative 145-strain population was collected over a 6-year period from this field in which a seggregating population of lettuce derived from Vr1/vr1 parents were evaluated. We de novo sequenced the parental genome of VdLs.16 strain and resequenced the derivative strains to analyze the genetic variations that accumulate over time in the field cropped with lettuce. Population genomics analyses identified 2769 single-nucleotide polymorphisms (SNPs) and 750 insertion/deletions (In-Dels) in the 145 isolates compared with the parental genome. Sequence divergence was identified in the coding sequence regions of 378 genes and in the putative promoter regions of 604 genes. Five-hundred and nine SNPs/In-Dels were identified as fixed. The SNPs and In-Dels were significantly enriched in the transposon-rich, gene-sparse regions, and in those genes with functional roles in signaling and transcriptional regulation.ConclusionsUnder the managed ecosystem continuously cropped to lettuce, the local adaptation of V. dahliae evolves at a whole genome scale to accumulate SNPs/In-Dels nonrandomly in hypervariable regions that encode components of signal transduction and transcriptional regulation.

Highlights

  • Plant pathogens and their hosts undergo adaptive changes in managed agricultural ecosystems, by overcoming host resistance, but the underlying genetic adaptations are difficult to determine in natural settings

  • The selection pressure is tempered by host and environmental heterogeneity as well as pathogen trade-offs between pathogenicity and lifestyle traits, which results in the selection of genetic variation at the genomic and population levels in both plants and pathogens [4, 5]

  • The overall aim of this study was to investigate the occurrence of genome-wide variations in a field population of V. dahliae VdLs.16 strain and 145 isolates derived from this strain that were collected over 6 years in a lettuce disease nursery [36]

Read more

Summary

Introduction

Plant pathogens and their hosts undergo adaptive changes in managed agricultural ecosystems, by overcoming host resistance, but the underlying genetic adaptations are difficult to determine in natural settings. Evolution of pathogens occurs by local adaptation in both natural and agricultural ecosystems [1]. The mechanisms of local adaptation differs between natural and agricultural ecosystems. The selection pressure is tempered by host and environmental heterogeneity as well as pathogen trade-offs between pathogenicity and lifestyle traits, which results in the selection of genetic variation at the genomic and population levels in both plants and pathogens [4, 5]. Pathogens may confront greater challenges in the agricultural ecosystems even though they appear to provide a homogeneous environment owing to selection pressures imposed on pathogen populations, including the variable conditions of fertilization, irrigation, pesticide applications, tillage, and soil physical and chemical properties [3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call