Abstract

<p>Long-lived, Mesozoic-Cenozoic subduction zones such as the Pacific slab under the Americas and the Tethyan slab under Eurasia consumed thousands of kms of lithosphere of which remnants are detected in today’s mantle by seismic tomography. Major differences, however, in subduction zone evolution occurred between these systems which include strong variations in subduction rate, slab morphological evolution, and trench motion, which all appear mostly to be accommodated in the upper 1000 km of the mantle (van der Meer et al. 2018). Furthermore, sinking rates of slabs below this zone tend to be similar for different subduction systems and an order of magnitude smaller than their plate/subduction velocities. Working from the premise that the mantle rheology that accommodated these subduction systems is basically similar, although still poorly constrained, we test the hypothesis that the contrasting evolution of these subduction systems is primarily tied in with the global plate tectonic forcing of subduction.</p><p>It is generally accepted that plate motion is primarily driven by slab pull with contributions from ridge push, rather than the drag of the underlying mantle. If correct, numerical subduction models should be able to obtain upper as well as lower mantle subduction velocities and sinking rates similar to those reconstructed from geological records. We are at the start of this investigation and will present the numerical model setup, modeling strategy, and preliminary results of a 2-D subduction modelling experiment. We implement a 2D-cylindrical model setup for solving the conservation of momentum, mass and energy with the open-source geodynamics code ASPECT (Kronbichler et al. 2012) using a nonlinear visco-plastic rheology and including the major phase changes. Our focus is on the possible role of the absolute motion of the subducting and overriding plates in concert with slab pull variation reconstructed from plate tectonic evolution models, while in both subduction cases the same (partly nonlinear) mantle rheological processes are required to accommodate slab morphology change and slab sinking. Kinematic modelling constraints are derived from global plate tectonic evolution models, while the tomographically inferred present-day stage provides the end-stage geometry of slabs.</p><p>van der Meer, D. G., Van Hinsbergen, D. J., & Spakman, W. (2018). Atlas of the underworld: Slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics, 723, 309-448.</p><p>Kronbichler, M., Heister, T., & Bangerth, W. (2012). High accuracy mantle convection simulation through modern numerical methods. Geophysical Journal International, 191(1), 12-29.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.