Abstract

Based on five-level rate-equation theory, we develop the laser-pulse-duration dependence of two-photon-absorption-induced singlet and triplet excited-state absorptions (ESAs). We present analytical expressions for the effective three-photon absorption coefficients caused by both singlet and triplet ESAs under the pulsed excitation on time scales from femtoseconds to microseconds. We demonstrate that the triplet ESA is predominant with longer laser pulses (microseconds to tens of nanoseconds) and that the resultant nonlinear absorption (NLA) can be adequately interpreted by a simplified four-level model. Under the excitation of picosecond laser pulses, generally speaking, the competition between singlet and triplet ESAs is observable. In this instance, the photodynamics of the system can be understood by a five-level model. In the femtosecond regime, however, a three-level model is validated in the prediction of NLA, because the triplet ESA becomes negligible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.