Abstract

We consider two-dimensional Yukawa systems in a perpendicular magnetic field. Computer simulations of both one-component and binary systems are used to explore the equilibrium particle dynamics in the fluid state. The mobility is found to scale with the inverse of the magnetic field strength (Bohm diffusion), for strong fields (ωc/ωp≳1). For bidisperse mixtures, the magnetic field dependence of the long-time mobility depends on the particle species, providing an external control of their mobility ratio. At large magnetic fields, the highly charged particles are almost immobilized by the magnetic field and form a porous matrix of obstacles for the mobile low-charge particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call