Abstract

In Caulobacter crescentus, progression through the cell cycle is governed by the periodic activation and inactivation of the master regulator CtrA. Two phosphorelays, each initiating with the histidine kinase CckA, promote CtrA activation by driving its phosphorylation and by inactivating its proteolysis. Here, we examined whether the CckA phosphorelays also influence the downregulation of CtrA. We demonstrate that CckA is bifunctional, capable of acting as either a kinase or phosphatase to drive the activation or inactivation, respectively, of CtrA. By identifying mutations that uncouple these two activities, we show that CckA's phosphatase activity is important for downregulating CtrA prior to DNA replication initiation in vivo but that other phosphatases may exist. Our results demonstrate that cell cycle transitions in Caulobacter require and are likely driven by the toggling of CckA between its kinase and phosphatase states. More generally, our results emphasize how the bifunctional nature of histidine kinases can help switch cells between mutually exclusive states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.