Abstract

The equation of motion of twists on classical antiferromagnetic Heisenberg spin chains are derived. It is shown that twists interact via position- and velocity-dependent long-range two-body forces. A quiescent regime is identified wherein the system conserves momentum. With increasing kinetic energy the system exits this regime and momentum conservation is violated due to walls annihilation. A bitwist system is shown to be integrable and its exact solution is analysed. Many-twist systems are discussed and novel periodic twist lattice solutions are found on closed chains. The stability of these solutions is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.