Abstract

The dynamics of the electrooptical 90° twist effect in a dual-frequency nematic liquid crystal is investigated for wavelengths of 0.65 and 1.55μ m. It is shown that the boundary conditions of the interaction between the phases affect the optical threshold of the twist effect, the contrast, and the working voltage range. The switching time of the twist effect from the off to the on state upon a variation of the amplitude of a rectangular dc voltage pulse from 15 to 50 V changes from 1.5 to 0.3 ms for a thickness of the nematic crystal layer of about 7 μ m. The minimal time of switching from the “on” to the “off” state was 3 ms in the case when relaxation of molecules in a cell with asymmetric boundary conditions was controlled electrically. The dynamic range of transmittance variation at a wavelength of 1.55 μm extended to 30 dB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call