Abstract
Yttrium-iron-garnet (YIG) is an important technological material used in microwave devices. In this paper we use dual microwave (1-4 GHz) drives to study the dynamical bifurcation behavior of magnetostatic and spin-wave modes in YIG spheres and rectangular films. The samples are placed in a dc magnetic field and driven by cw and pulse-modulated microwave excitations at magnetostatic mode frequencies. A second microwave drive applied to the sample excites additional spin-wave modes that can interact with those arising from the original excitation and thereby affect the transmission characteristics at the primary frequency. We find a significant decrease in transmission of the primary when the secondary frequency is tuned to approximately half that of the primary drive. This decrease is observed both in the steady state behavior and in the initial overshoot transient associated with pulse modulation of the primary excitation. Results such as these are often treated by extending linear theory to include higher order interaction terms. Herein we present a simple dynamical model that reproduces results that qualitatively resemble the experimental data. (c) 1997 American Institute of Physics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.