Abstract
We study the dynamics of transcendental entire functions with Siegel disks whose singular values are just two points. One of the two singular values is not only a superattracting fixed point with multiplicity more than two but also an asymptotic value. Another one is a critical value with free dynamics under iterations. We prove that if the multiplicity of the superattracting fixed point is large enough, then the restriction of the transcendental entire function near the Siegel point is a quadratic-like map. Therefore the Siegel disk and its boundary correspond to those of some quadratic polynomial at the level of quasiconformality. As its applications, the logarithmic lift of the above transcendental entire function has a wandering domain whose shape looks like a Siegel disk of a quadratic polynomial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.