Abstract

A new system of dynamical equations was obtained by using the perturbation and potential flow theory to couple the pulsation and surface deformation of the second-order Legendre polynomials (P2) of three bubbles in a line. The feasibility and effectiveness of the model were verified by simulating the radial oscillations, surface deformation with P2, and shape evolution of three bubbles. The spherical radial pulsation and surface deformation of the three bubbles exhibit periodic behavior. The maximum secondary Bjerknes forces (SBFs) on the three bubbles are found not to depend on the system’s resonance frequency. Within a stable region, the SBFs of the three bubbles increase with increasing sound pressure amplitude but decrease with increasing distance between the bubbles. The primary Bjerknes force (PBF) on a bubble is significantly higher than the SBF on it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.