Abstract

Describing superfluid turbulence at intermediate scales between the inter-vortex distance and the macroscale requires an acceptable equation of motion for the density of quantized vortex lines $\cal{L}$. The closure of such an equation for superfluid inhomogeneous flows requires additional inputs besides $\cal{L}$ and the normal and superfluid velocity fields. In this paper we offer a minimal closure using one additional anisotropy parameter $I_{l0}$. Using the example of counterflow superfluid turbulence we derive two coupled closure equations for the vortex line density and the anisotropy parameter $I_{l0}$ with an input of the normal and superfluid velocity fields. The various closure assumptions and the predictions of the resulting theory are tested against numerical simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call