Abstract

The enterobacteria Erwinia chrysanthemi and other soft-rot Erwiniae cause soft-rot disease in plants by secreting extracellular enzymes among which the main virulence factors are pectate lyases (Pels). These pectic enzymes are produced by the activation of the pel genes whose transcription is controlled by a complex regulatory network. Using the knowledge acquired in a previous work, a simplified regulatory network is proposed, keeping only the key variables for the transition to pathogenicity. We identify that the core mechanism for the onset of Pel is governed by a small metabolico-genetic network involving the repressor KdgR and the inductor KDG. Next we consider that the triggering of Pel synthesis is relayed by a quorum sensing (QS) phenomenon describing the ability of bacteria to use the size and density of their colonies to regulate the production of pectate lyases. The simplified network is described by only a few differential equations, thereby allowing the use of standard bifurcation analysis in the phase space. From this modeling emerges a qualitative but generic mechanism for the transition to virulence of a pectinolytic bacterium when it infects a plant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call