Abstract

Stress-mediated magnetoelectric heterostructures represent a very promising approach for the realization of ultra-low energy Random Access Memories. The magnetoelectric writing of information has been extensively studied in the past, but it was demonstrated only recently that the magnetoelectric effect can also provide means for reading the stored information. We hereby theoretically study the dynamic behaviour of a magnetoelectric random access memory cell (MELRAM) typically composed of a magnetostrictive multilayer N×(TbCo2/FeCo) that is elastically coupled with a 〈011〉 PMN-PT ferroelectric crystal and placed in a Wheatstone bridge-like configuration. The numerical resolution of the LLG and electrodynamics equation system demonstrates high speed write and read operations with an associated extra-low energy consumption. In this model, the reading energy for a 50 nm cell size is estimated to be less than 5 aJ/bit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.