Abstract

We consider recent observations of the chromospheric network, and argue that the bright network grains observed in the Ca II H & K lines are heated by an as yet unidentified quasi-steady process. We propose that the heating is caused by dissipation of short-period magnetoacoustic waves in magnetic flux tubes (periods less than 100 s). Magnetohydrodynamic (MHD) models of such waves are presented. We consider wave generation in the network due to two separate processes: (a) by transverse motions at the base of the flux tube; and (b) by the absorption of acoustic waves generated in the ambient medium. We find that the former mechanism leads to an efficient heating of the chromosphere by slow magnetoacoustic waves propagating along magnetic field lines. This heating is produced by shock waves with a horizontal size of a few hundred kilometers. In contrast, acoustic waves excited in the ambient medium are converted into transverse fast modes that travel rapidly through the flux tube and do not form shocks, unless the acoustic sources are located within 100 km from the tube axis. We conclude that the magnetic network may be heated by magnetoacoustic waves that are generated in or near the flux tubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.