Abstract

Multiple semantic priming processes between several related and/or unrelated words are at work during the processing of sequences of words. Multiple priming generates rich dynamics of effects depending on the relationship between the target word and the first and/or second prime previously presented. The experimental literature suggests that during the on-line processing of the primes, the activation can shift from associates to the first prime to associates to the second prime. Though the semantic priming shift is central to the on-line and rapid updating of word meanings in the working memory, its precise dynamics are still poorly understood and it is still a challenge to model how it functions in the cerebral cortex. Four multiple priming experiments are proposed that cross-manipulate delays and association strength between the primes and the target. Results show for the first time that association strength determines complex dynamics of the semantic priming shift, ranging from an absence of a shift to a complete shift. A cortical network model of spike frequency adaptive neuron populations is proposed to account for the non-continuous evolution of the priming shift over time. It allows linking the dynamics of the priming shift assessed at the behavioral level to the non-linear dynamics of the firing rates of neurons populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call