Abstract

Conical density theorems are used in the geometric measure theory to derive geometric information from given metric information. The idea is to examine how a measure is distributed in small balls. Finding conditions that guarantee the measure to be effectively spread out in different directions is a classical question going back to Besicovitch (1938) and Marstrand (1954). Classically, conical density theorems deal with the distribution of the Hausdorff measure. The process of taking blow-ups of a measure around a point induces a natural dynamical system called the scenery flow. Relying on this dynamics makes it possible to apply ergodic-theoretical methods to understand the statistical behavior of tangent measures. This approach was initiated by Furstenberg (1970, 2008) and greatly developed by Hochman (2010). The scenery flow is a well-suited tool to address problems concerning conical densities. In this survey, we demonstrate how to develop the ergodic-theoretical machinery around the scenery flow and use it to study conical density theorems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.