Abstract
In this paper we consider the quasi-periodic Schrodinger cocycle over \(\mathbb{T}^d\) (d ≥ 1) and, in particular, its projectivization. In the regime of large coupling constants and Diophantine frequencies, we give an affirmative answer to a question posed by M. Herman [21, p.482] concerning the geometric structure of certain Strange Non-chaotic Attractors which appear in the projective dynamical system. We also show that for some phase, the lowest energy in the spectrum of the associated Schrodinger operator is an eigenvalue with an exponentially decaying eigenfunction. This generalizes [39] to the multi-frequency case (d > 1).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.