Abstract

The ground state of the one-dimensional Bose-Hubbard model at unit filling undergoes the Mott-superfluid quantum phase transition. It belongs to the Kosterlitz-Thouless universality class with an exponential divergence of the correlation length in place of the usual power law. We present numerical simulations of a linear quench both from the Mott insulator to superfluid and back. The results satisfy the scaling hypothesis that follows from the Kibble-Zurek mechanism (KZM). In the superfluid-to-Mott quenches there is no significant excitation in the superfluid phase despite its gaplessness. Since all critical superfluid ground states are qualitatively similar, the excitation begins to build up only after crossing the critical point when the ground state begins to change fundamentally. The last process falls into the KZM framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.