Abstract

Hydrogen production in photoelectrochemical cells constitutes an important avenue toward carbon-free fuel. The most convenient process for hydrogen production is the splitting of water molecules, which necessitates a catalytic reaction involving a semiconductor. Here, we introduce a framework for the study of photocatalyzed reactions on semiconductor surfaces based on time-dependent density functional theory that explicitly accounts for the evolution of electronically excited states. Within this framework, we investigate the possibility of hole-mediated splitting of molecularly adsorbed water on a representative metal oxide surface—the rutile TiO2(110). We find that oxidative dehydrogenation of water is possible in synergy with thermal effects at temperatures between 60 and 100 K only when defects like Ti interstitials are present in the subsurface region. This study presents a general computational strategy for describing photoexcited semiconductor/adsorbate interfaces and also demonstrates that the occurrence of water dissociation on the rutile TiO2(110) surface depends sensitively on the local atomic environment and external parameters such as temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.