Abstract

The spin-lattice relaxation time of the 31P nucleus in the phosphate group of egg yolk phosphatidylcholine multilamellar dispersions has been investigated at four resonant frequencies (38.9, 81.0, 108.9, and 145.7 MHz) in the temperature range from -30 degrees to 60 degrees C. The observed frequency dependence of the relaxation indicates that both dipolar relaxation and relaxation due to anisotropic chemical shielding are significant mechanisms. The experimental data have thus been modeled assuming both mechanisms and the analysis has allowed the contribution of each to the relaxation to be determined along with the correlation time for the molecular reorientation as a function of temperature. Dipolar relaxation was found to dominate at low nuclear magnetic resonance frequencies while at high frequencies the anisotropic chemical shift dominates. The correlation time of the phosphate group is on the order of 10(-9) s at 60 degrees C and increases to approximately 10(-7) s at -30 degrees C. It is observed that the freezing of the buffer which occurs at approximately -8 degrees C has a significant effect on the phosphate group reorientation. This effect of the freezing is to change the activation energy for the phosphate group reorientation from 16.9 KJ/mol above -8 degrees C to 32.5 KJ/mol below -8 degrees C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.