Abstract

The vertically averaged deviatoric stress tensor field within the western United States was determined with topographic data, geoid data, recent global positioning system observations, and strain rate magnitudes and styles from Quaternary faults. Gravitational potential energy differences control the large fault-normal compression on the California coast. Deformation in the Basin and Range is driven, in part, by gravitational potential energy differences, but extension directions there are modified by plate interaction stresses. The California shear zone has relatively low vertically averaged viscosity of about 10(21) pascal.seconds, whereas the Basin and Range has a higher vertically averaged viscosity of 10(22) pascal.seconds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.