Abstract
The crossed molecular beam scattering technique with soft electron ionization (EI) is used to disentangle the complex dynamics of the polyatomic O(3P) + C2H4 reaction, which is of great relevance in combustion and atmospheric chemistry. Exploiting the newly developed capability of attaining universal product detection by using soft EI, at a collision energy of 54.0 kJ mol(-1), five different primary products have been identified, which correspond to the five exoergic competing channels leading to CH2CHO(vinoxy) + H, CH3CO(acetyl) + H, CH3(methyl) + HCO(formyl), CH2(methylene) + HCHO(formaldehyde), and CH2CO(ketene) + H2. From laboratory product angular and velocity distributions, center-of-mass product angular and translational energy distributions and the relative branching ratios for each channel have been obtained, affording an unprecedented characterization of this important reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.