Abstract

AbstractStellar surveys and dynamical models have recently led to important progress on understanding the dynamical structure of the Milky Way’s bar and central box/peanut bulge. This talk briefly reviews the density structure of the bulge and bar from star count tomography, the cylindrical rotation of bulge stars, and the measurements of their stellar masses and pattern speed that have been obtained by fitting dynamical models to the combined star count and line-of-sight velocity data. Recent work deriving absolute proper motions throughout the bulge from the VIRAC survey and Gaia has led to a new 3D measurement of the barred bulge kinematics which is expected to greatly improve the dynamical models, and has already confirmed the relatively slow pattern speed (∼40 kms−1 kpc−1) obtained from the previous dynamical and gas-dynamical modelling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.