Abstract

Abstract A reduced-gravity planetary-geostrophic model of the North Atlantic consisting of two active layers overlying a motionless abyss is developed to investigate the effect of the wind field in shaping the dynamics of the Mediterranean salinity tongue. The model is driven by climatological winds and eastern boundary ventilation in a basin of realistic geometry and includes a parameterization of meddies. The upper-layer depth from the model shows a clear similarity to observations, both in terms of the location and intensity of the subtropical gyre and also the position of the outcropping line in the northern basin. Potential vorticity in layer two reproduces the sweep of potential-vorticity contours southwestward from the eastern boundary and extending westward into the interior, and provides the pathways along which Mediterranean Water spreads into the model interior. The authors solve for the steady salinity field in the second layer, including sources of Upper Labrador Sea Water and Antarctic Inter...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call