Abstract
The time-dependent covariant density functional theory in 3D lattice space has been developed and applied to investigate the microscopic dynamics of the linear-chain cluster states for carbon isotopes in the reactions 4He+8Be and 4He+10Be without any symmetry assumptions. By examining the density distribution and its time evolutions, the structure and dynamics of the linear-chain states are analyzed, and the quasiperiodic oscillations of the clusters are revealed. For 4He+8Be, the linear-chain states evolve to a triangular configuration and then to a more compact shape. In contrast, for 4He+10Be, the lifetime of the linear-chain states is much more prolonged due to the dynamical isospin effects by the valence neutrons which slow down the longitudinal oscillations of the clusters and persist the linear-chain states. The dependence of the linear chain survival time and dynamical isospin effects on impact parameters have been illustrated as well.
Highlights
The time-dependent covariant density functional theory in 3D lattice space has been developed and applied to investigate the microscopic dynamics of the linear-chain cluster states for carbon isotopes in the reactions 4He+8Be and 4He+10Be without any symmetry assumptions
Its realization would have a strong impact on the research field of quantum many-body systems, because such an exotic clustering state is naturally recognized as an extreme of cluster structure due to its presumed propensity to exhibit bending configurations
One can conclude that the two valence neutrons in the 4He+10Be collision bring the dynamical isospin effects, which can slow down the β30 oscillation in the z direction and, are helpful to persist the linear-chain configurations
Summary
The time-dependent covariant density functional theory in 3D lattice space has been developed and applied to investigate the microscopic dynamics of the linear-chain cluster states for carbon isotopes in the reactions 4He+8Be and 4He+10Be without any symmetry assumptions. To investigate the dynamic quasiperiodic motion of the clusters in detail, in Fig. 2(a), 6 the time evolution of the quadrupole deformation β20 for the head-on collisions of 4He+8Be and 4He+10Be systems are depicted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.