Abstract
Under investigation in this paper is a generalized mixed nonlinear Schrödinger equation (GMNLSE) which arises in several physical areas including the quantum field theory, weakly nonlinear dispersive water waves, and nonlinear optics. The linear stability analysis is performed and the instability zones as well as the modulational instability gain are obtained and discussed. Higher–order rogue waves (RWs) in terms of the determinants for the GMNLSE model are constructed by the N-fold Darboux transformation. Several patterns of the RWs are illustrated, such as the fundamental pattern, triangular pattern, circular pattern, pentagon pattern, circular–triangular pattern, and circular-fundamental pattern. Effects of the nonlinear parameters on the RWs are discussed. It is found that the nonlinear terms affect the widths and velocities of the RWs, although the amplitudes of these waves remain unchanged. The semirational RW solution, which is a combination of rational and exponential functions, is derived to describe the interaction between the RW and multi-breather.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.