Abstract

It is well known that the eye's optics exhibit temporal instability in the form of microfluctuations in focus; however, almost nothing is known of the temporal properties of the eye's other aberrations. We constructed a real-time Hartmann-Shack (HS) wave-front sensor to measure these dynamics at frequencies as high as 60 Hz. To reduce spatial inhomogeneities in the short-exposure HS images, we used a low-coherence source and a scanning system. HS images were collected on three normal subjects with natural and paralyzed accommodation. Average temporal power spectra were computed for the wave-front rms, the Seidel aberrations, and each of 32 Zernike coefficients. The results indicate the presence of fluctuations in all of the eye's aberration, not just defocus. Fluctuations in higher-order aberrations share similar spectra and bandwidths both within and between subjects, dropping at a rate of approximately 4 dB per octave in temporal frequency. The spectrum shape for higher-order aberrations is generally different from that for microfluctuations of accommodation. The origin of these measured fluctuations is not known, and both corneal/lenticular and retinal causes are considered. Under the assumption that they are purely corneal or lenticular, calculations suggest that a perfect adaptive optics system with a closed-loop bandwidth of 1-2 Hz could correct these aberrations well enough to achieve diffraction-limited imaging over a dilated pupil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call