Abstract

In this paper, the effect of homogeneous and non-homogeneous magnetic fields as an external noisy on the entanglement dynamics over partial entangled state quantum network is studied. The Dzyaloshiniskii-Moriya (DM) interaction is used to generate entangled network from partially entangled states in the presence of the spin-orbit coupling. The entanglement between any two nodes is quantified using Wootter concurrence. The effect of homogeneous and non-homogeneous magnetic field in presence and absence of the spin coupling on the entanglement between any two nodes of the network is investigated. The results show that the homogeneous magnetic field has no effect on the entanglement without the presence of the spin-orbit interaction. The non-homogeneous magnetic field has a strong impact on the entanglement either with or without spin-orbit couplings. For initially entangled channels, the upper bound does not exceed its initial value, whereas for the channels generated via indirect interaction, the entanglement reaches its maximum value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.