Abstract

In low pressure <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$(\mathrm{p} &lt; 10\ \text{Pa})$</tex> capacitively coupled radio frequency (CCRF) discharges, the optimization of technological processes, such as sputtering, etching and plasma enhanced chemical vapor deposition requires an essential understanding of the electron dynamics. This is because electrons with a specific energy threshold, e.g., ionization energy, are responsible for the generation of positive ions and radicals. Therefore, the two most important questions in low pressure CCRF discharges are, how do the electrons gain and loss their energy during one radio frequency cycle1 and what is a typical electron temperature?

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.