Abstract
The spin dynamics of two dimensional XY ferromagnet are reexamined at low temperatures in the framework of the Mori continued fraction formalism using the Gaussian approximation. In this formalism, the terms on denominators for the Laplace transform of the relaxation function R(t) are related to the frequency moments<img src="http:/img/fbpe/bjp/v28n4/sd6.gif" alt="sd6.gif (174 bytes)" align="absmiddle"> of the relaxation shape function R(q,w). In the Gaussian approximation scheme, we truncate the continued fraction for R(t) on the second stage. Adopting this approximation, we calculated up to the sixth moment. The moments are writing in terms the static spin correlation functions. In the estimation of the fourth and sixth moment at finite temperature, the four and six-spin correlation functions may be approximated by a sum of products of appropriate pair correlation functions(mode-mode decoupling). In this work we calculated the static spin correlation functions for the expressions to the fourth and sixth moments, needed in the study of the dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.