Abstract
The direct dynamics trajectory surface hopping (DDTSH) method has been employed to study the reaction of C(3P) with ethylene (C2H4). Our trajectory simulations show that at a reagent collision energy of 7.36 kcal/mol, there are two possible product channels: propargyl (H2CCCH) + H and carbene (CH2) + acetylene (HCCH). Estimated branching ratios based on trajectory propagations indicate that propargyl radical formation is the dominant channel contributing (94.1 ± 5.2) % of the overall products formation with (5.9 ± 1.7)% contribution from the minor CH2 + HCCH channel. These findings are consistent with earlier experimental observations and theoretical predictions that propargyl (H2CCCH) formation is the dominant channel for the C(3P) + C2H4 collision reaction. Our trajectory simulations, however, unravel five distinctly different dynamical pathways, unlike earlier experimental and theoretical predictions of only two pathways proposed for the formation of propargyl radical, and three different dynamics are followed for the CH2 + HCCH channel (this channel was not detected experimentally). The computed translational energy distribution for the propargyl + H channel is narrower and showed peak maximum at a lower energy compared to the experimental one. While the center of mass product angular distribution based on our trajectory propagation is nearly isotropic in nature indicating formation of long-lived intermediate complexes, the experimental one was reported to be backward-forward distributed with more intensity in the forward direction indicating the formation of an osculating complex. Our trajectory surface hopping calculations confirm that the effect of intersystem crossing (ISC) is not important for the title reaction presumably because of weak spin-orbit coupling values (<10 cm-1) for the (C + C2H4) system. No trace of cyclic products formation was obtained from our trajectory simulations, which however was predicted to be a minor (2%) product channel, experimentally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.