Abstract

A mathematical model is presented to predict the oscillating dynamics of atomic force microscope cantilevers with nanoscale tips tapping on elastic samples in liquid environments. Theoretical simulations and experiments performed in liquids using low stiffness probes on hard and soft samples reveal that, unlike in air, the second flexural mode of the probe is momentarily excited near times of tip-sample contact. The model also predicts closely the tip amplitude and phase of the tip at different set points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call