Abstract

In this paper, we consider an extended nonlinear Schrodinger equation that includes fifth-order dispersion with matching higher-order nonlinear terms. Via the modified Darboux transformation and Joukowsky transform, we present the superregular breather (SRB), multipeak soliton and hybrid solutions. The latter two modes appear as a result of the higher-order effects and are converted from a SRB one, which cannot exist for the standard NLS equation. These solutions reduce to a small localized perturbation of the background at time zero, which is different from the previous analytical solutions. The corresponding state transition conditions are given analytically. The relationship between modulation instability and state transition is unveiled. Our results will enrich the dynamics of nonlinear waves in a higher-order wave system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.