Abstract

Double-quantum-filtered NMR and T(1) inversion-recovery spectroscopy were employed to exploit the temperature-dependent dynamics of D(2)O confined in MCM-41. Samples with three pore sizes of 1.58, 2.03, and 2.34 nm and two D(2)O contents were investigated. The reorientation correlation times of confined D(2)O in variously sized pores exhibit different temperature dependencies. The results reveal that the D(2)O molecules at fast motion site remain mobile below approximately 225 K and a liquid-liquid phase transition occurs around this temperature for all samples studied. This temperature is thought to be unreachable for supercooled D(2)O. Particularly, in 20 wt % D(2)O loaded samples with pore diameters of 1.58 and 2.03 nm, the reorientational correlation times of D(2)O at fast motion site exhibit Arrhenius behavior between 225 and 290 K, while other samples show power law dependency. Thus, a liquid phase of the fragile type in bigger pores changes to the strong type in samples with smaller pores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call