Abstract

The dynamics of structural transformations during copper aluminate reduction in the temperature range used for catalyst activation was studied by high-temperature X-ray analysis under controlled conditions (hydrogen, 2O–4OO‡C). The techniques of neutron diffraction analysis, IR spectroscopy, chemical phase analysis, and electron microscopy were also used at particular stages. In the course of reduction, copper metal is deposited onto the surface of spinel crystals from the bulk. Spinel becomes cation-deficient with respect to copper. An analysis of powder diffraction patterns demonstrated that copper is reduced and released from tetrahedral positions of the spinel structure at temperatures below ~300‡C and from octahedral positions only at temperatures above 300‡C. In this case, a redistribution of aluminum ions was observed simultaneously. It is likely that the electrical neutrality is attained by the formation of OH groups, the appearance of which in reduced samples was detected by IR spectroscopy and confirmed by neutron diffraction analysis. At a reduction temperature of 400‡C, the oxygen framework was partially disintegrated. The structures of reduced copper aluminates and chromites were compared.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call