Abstract

We present a model for the motion of hard spherical particles on a two-dimensional surface. The model includes both the interaction between the particles via collisions and the interaction of the particles with the substrate. We analyze in detail the effects of sliding and rolling friction, which are usually overlooked. It is found that the properties of this particulate system are influenced significantly by the substrate-particle interactions. In particular, sliding of the particles relative to the substrate after a collision leads to considerable energy loss for common experimental conditions. The presented results provide a basis that can be used to realistically model the dynamical properties of the system, and provide further insight into density fluctuations and related phenomena of clustering and structure formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.